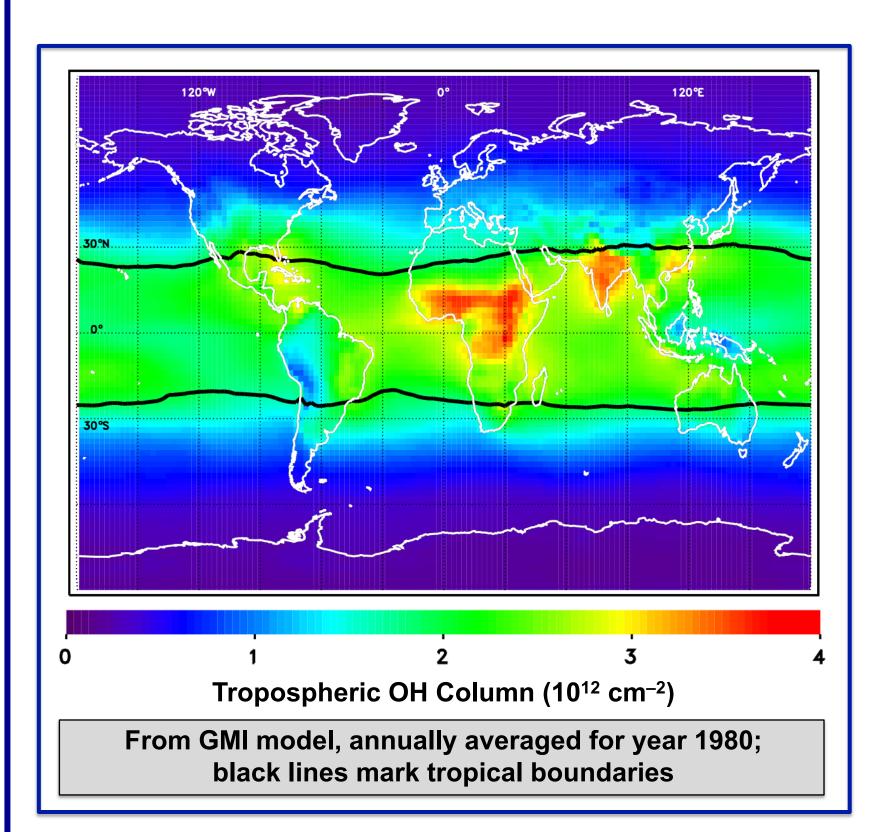


Variations in Global Tropospheric OH Over the Last Several Decades

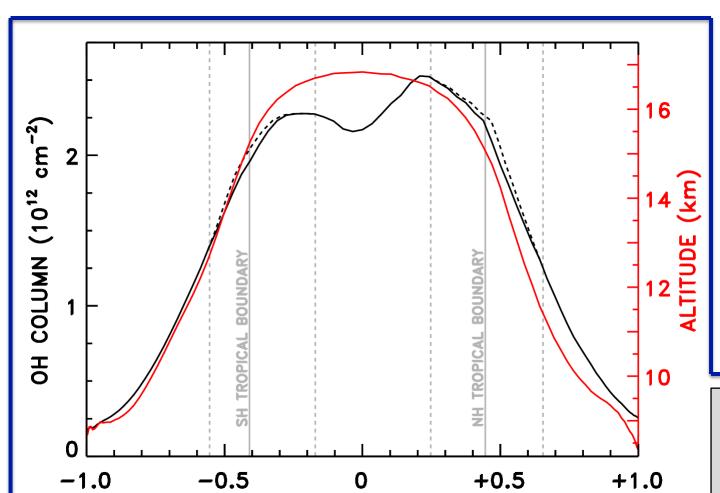


Julie M. Nicely^{1,2,3} (julie.m.nicely@nasa.gov), Timothy P. Canty³, Michael Manyin^{2,4}, Luke D. Oman², Ross J. Salawitch³, Stephen D. Steenrod^{1,2}, Susan E. Strahan^{1,2}, and Sarah A. Strode^{1,2}

¹Universities Space Research Association, Columbia, MD, USA. ²NASA Goddard Space Flight Center, Greenbelt, MD, USA. ³University of Maryland, College Park, MD, USA. ⁴Science Systems and Applications, Inc., Lanham, MD, USA.

1. Why study OH?

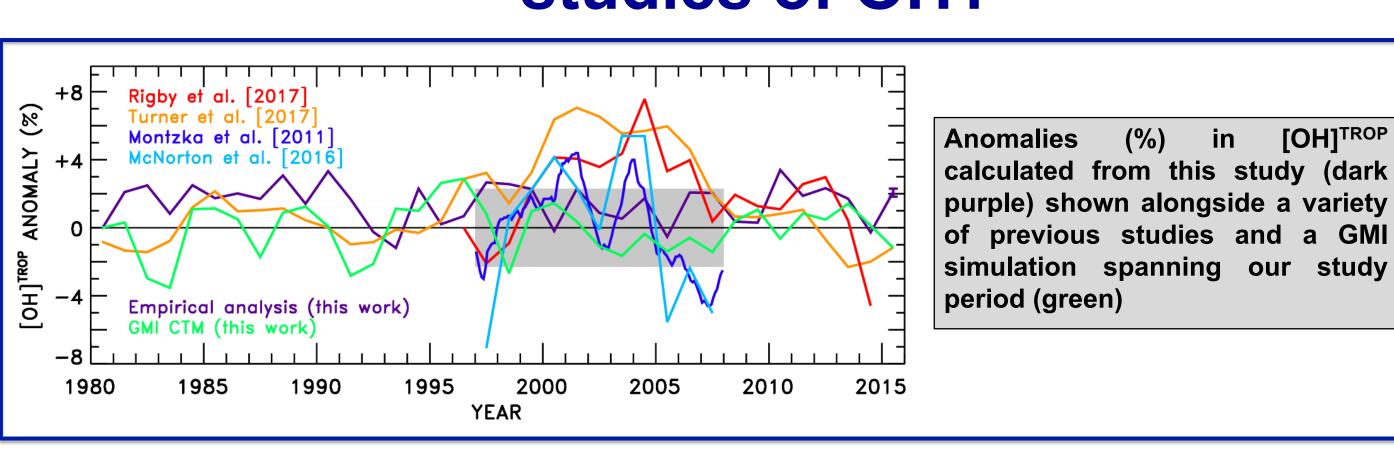
- Hydroxyl radical (OH) is the primary oxidant in Earth's troposphere
- OH is responsible for removing many greenhouse gases (CH₄), ozone-depleting substances (HCFCs & very short-lived halogenated compounds), & pollutants (CO)
- Radical cycling of OH also affects production of greenhouse gas and pollutant tropospheric ozone through reaction with nitrogen oxides (NO_x)



- Short lifetime, high reactivity, & low concentrations of OH make it difficult to measure
- Estimates of global abundances of OH ([OH]^{TROP}), to date, rely on a handful of observable species
- E.g., methyl chloroform (MCF) is lost primarily by OH and is observed by global network
- However, backing out global OH abundances requires assumptions concerning MCF emissions and minor sinks
- Current estimates disagree on how much [OH]^{TROP} varies from year to year
- Attribution of [OH]^{TROP}
 fluctuations not possible via
 traditional methods

We aim to answer, using observations of the sources & sinks of OH: How much does [OH]^{TROP} vary over time? What are the drivers of this variability?

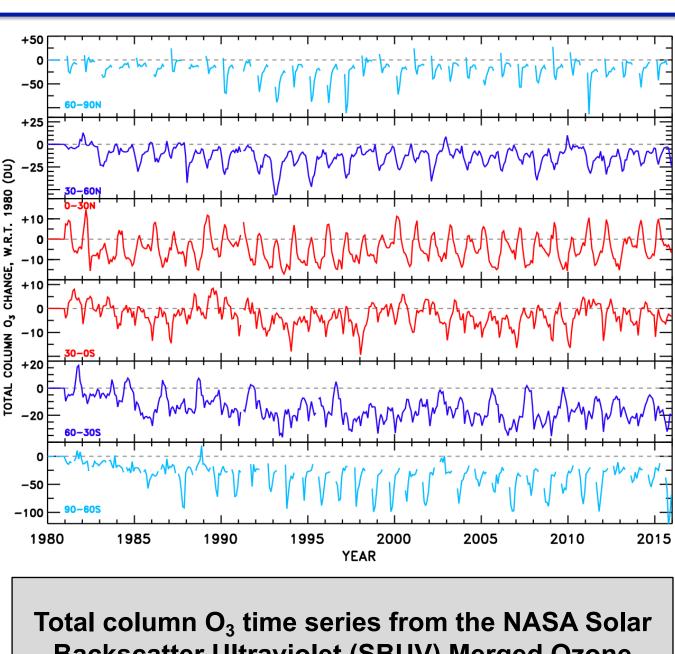
3. Empirical method for calculating $\triangle OH$


- Initial 3-D field of tropospheric OH concentrations is used from a 1980 simulation of the Goddard Modeling Initiative (GMI) chemical transport model as a starting point (shown as vertically-integrated columns, Box 1)
- Sensitivity of OH to changes in each of the examined parameters (δ (OH)/ δ (H₂O), δ (OH)/ δ (OH)/ δ (O¹D) (dependent on overhead O₃), δ (OH)/ δ (NO_x), δ (OH)/ δ (CH₄), and δ (OH)/ δ (T)) is evaluated by box model (DSMACC: *Emmerson and Evans, ACP, 2009*)
- Then, the change in each of the parameters above is found from the observational data set and multiplied by the sensitivity to get a value for △[OH]
- For overhead O_3 , we use the photolysis model Fast-JX version 7.1 (*Bian & Prather, 2002*) to calculate the change in O_3 photolysis frequency resulting from a change in the overhead O_3 column, since this is the direct mechanism causing OH to vary
- Also included is the impact of Hadley cell expansion (i.e., tropical widening) on OH
- OH concentrations are highest in the tropics due to UV flux and humidity
- Several studies point to expansion of the Hadley cell that is severely underestimated in global climate models (*Allen et al., Nat. Geosci., 2014*)

- If OH increases in the regions that transition from extratropical character to tropical, this impact is missed in model simulations of trends in [OH]^{TROP}
- We include an approximation of this impact by increasing OH in the transition regions to match 1°/decade global rate of widening from the literature

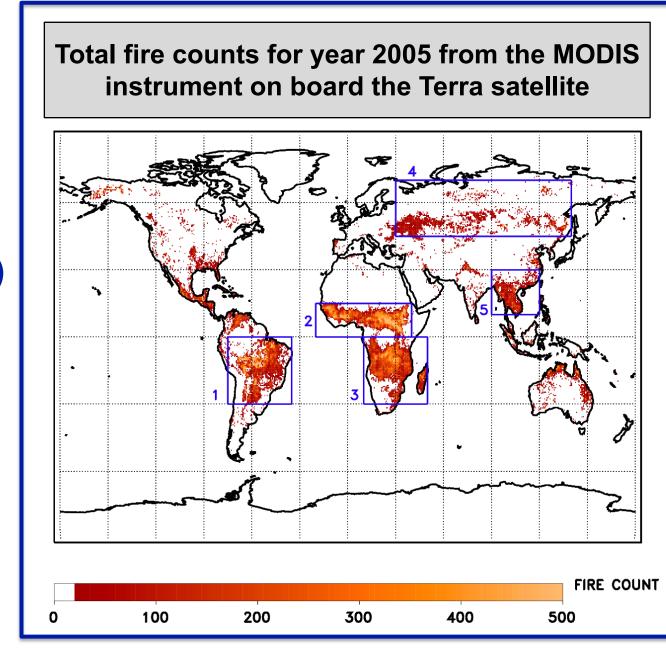
Tropospheric OH Column Distribution across latitudes, shown with (dashed black line) & without (solid black) imposition of tropical widening effect

5. How do these results compare to past studies of OH?



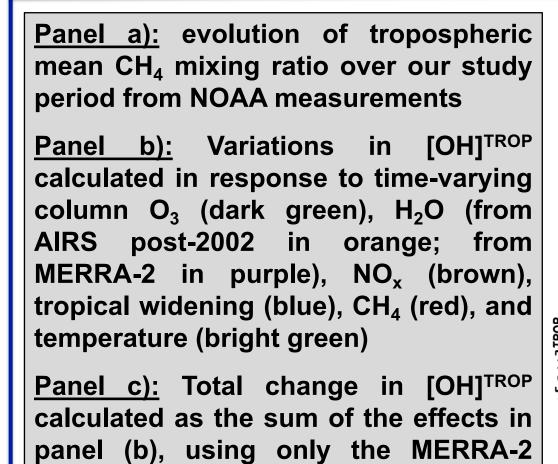
- Past studies that perform chemical inversions of MCF and sometimes CH₄ isotopes infer an increase in [OH]^{TROP} in the late 1990s
- Those studies acknowledge assumptions to which their results are sensitive
- Regardless, the pause in CH₄ growth rate has been partly attributed to this increase

Our analysis finds no evidence of this increase in [OH]TROP


- Similarly, a global model simulation of the GMI chemical transport model over this study period shows no discernable trend in [OH]^{TROP}
- We also find differences compared to a study that used chemical transport models to simulate temporally-varying [OH]^{TROP} (Holmes et al., ACP, 2013)
- We found a similar impact due to CH_4 as *Holmes et al.*, but a weaker response of $[OH]^{TROP}$ to changes in temperature and H_2O
- While the chemical transport models utilized by *Holmes et al.* may account for feedbacks that we do not capture, our global model simulation suggests similar variability and lack of trend in [OH]^{TROP} to our empirical results

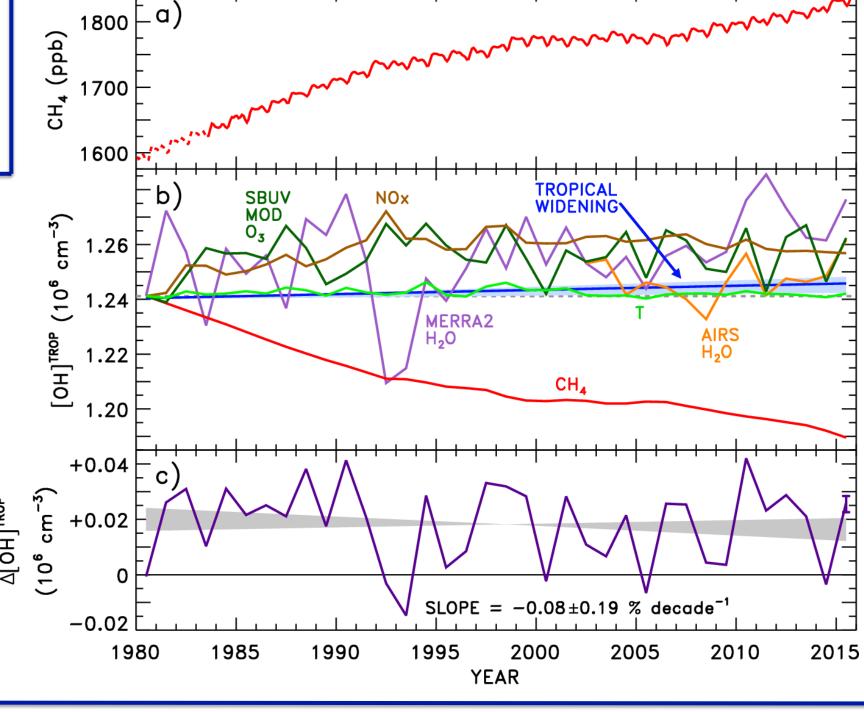
2. Data sets for OH-relevant parameters

- Total column O₃ time series from the NASA Solar Backscatter Ultraviolet (SBUV) Merged Ozone Data Set (MOD) data set, utilizing various SBUV, TOMS, and OMI satellite-based instruments
- <u>Temperature</u>: Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2), 1980-2015 (also H₂O)
- CH₄: NOAA Cooperative Global Air Sampling Network, 1983-2015
- $\underline{NO_x}$: Not directly constrained by observations, but fire counts from MODIS on board the NASA Terra satellite show realistic representation of NO_x emissions within the global GMI model


- OH is formed by photolysis of O₃ by UV light followed by reaction with H₂O
- Some other influencers of OH chemistry include temperature, NO_x (secondary production of OH), & CH₄ (loss)
- Sufficient observations exist for most of these factors that we can calculate OH responses to each for years 1980-2015:
 - Overhead O₃: NASA SBUV MOD data set, 1980-2015
 - Water vapor: Atmospheric Infrared Sounder (AIRS) instrument on board NASA Aqua satellite, 2002-2015

4. Results: What's driving OH variability?

Overall, increases in $[OH]^{TROP}$ due to H_2O , NO_x , overhead O_3 , and tropical widening almost balance the decrease expected due to rising CH_4


- CH₄ causes a decrease in [OH]^{TROP} of -1.01 ± 0.05 %/decade, while H₂O has the next largest impact, imparting a +0.44 ±0.20 %/decade trend
- Other [OH]^{TROP} trends are: $+0.25\pm0.07$ %/decade due to NO_x, $+0.13\pm0.11$ %/decade due to O₃ column, $+0.12^{+0.07}_{-0.09}$ %/decade due to tropical widening, and -0.02 ± 0.02 %/decade due to temperature
- Total trend in the $[OH]^{TROP}$ anomaly (panel c, below) is -0.08 ± 0.19 %/decade, suggesting the oxidizing capacity of the troposphere is well-buffered
- While the effect of tropical widening on [OH]^{TROP} is relatively small, the degree to which global models underestimate this effect is a factor of 4-6, meaning our

source of H₂O data

climate models neglect this

contribution to increasing OH

6. Implications

- Understanding how CH₄ emissions are changing is critical for simulating future climate
- While knowledge of anthropogenic emissions is relatively well-constrained, natural emissions from, e.g., wetlands and animal husbandry are difficult to quantify
- Top-down estimates of CH_4 emissions require some knowledge of OH abundances, which may not be sufficiently constrained by a single species observation
- Our study shows that consideration of the major OH sources in addition to its sinks gives different results relative to the most common method of inferring [OH]^{TROP}
- Further work can be done to perform a more complete accounting of [OH]^{TROP} by including CO, volatile organic compounds such as isoprene, and other species that influence OH chemistry; however, constraint of these species to global-scale observations is a challenge

7. Acknowledgments

- Work performed at U. Maryland was supported by funding from the NASA MAP, ACMAP, and Aura Science programs
- Funding at NASA GSFC was also provided by the NASA Postdoctoral Program, administered by the Universities Space Research Association under contract with NASA
- All data and models used in this work are publicly available through NASA data archives or are otherwise distributed through various web portals
- Further details of this work can be found in the published article, "Changes in Global Tropospheric OH Expected as a Result of Climate Change Over the Last Several Decades," *J. Geophys. Res.–Atmos.*, 123(18), 2018, doi:10.1029/2018JD028388